Received: April 13, 1989; accepted: June 29, 1989

PREPARATION AND CHARACTERIZATION OF HYDRAZINIUM(1+) AND (2+) HEXAFLUOROSTANNATES(IV) AND HYDRAZINIUM(2+) HEXAFLUOROSTAN-NATE(IV) DIFLUORIDE

A. RAHTEN

'Jožef Stefan' Institute,

'E. Kardelj' University, 61000 Ljubljana (Yugoslavia)

D. GANTAR and I. LEBAN Faculty of Natural Sciences and Technology, 'E. Kardelj' University, 61000 Ljubljana (Yugoslavia)

SUMMARY

Reaction between $N_2H_6F_2$ and $Sn(OH)_4$ in aqueous HF as solvent gave two new complexes, $N_2H_6SnF_6$ and $(N_2H_6)_2SnF_6F_2$, depending on the initial molar ratio of the starting materials. In a laser beam $N_2H_6SnF_6$ is slowly destroyed and the product of decomposition was identified as a mixture of the $N_2H_5^+$ and NH_4^+ compounds. Thermal decomposition of $(N_2H_6)_2SnF_6F_2$ in a vacuum system yields pure $(N_2H_5)_2SnF_6$. Hydrazinium(1+) and (2+) fluorostannate(IV) compounds were characterized by chemical analysis and vibrational spectra. An X-ray powder photograph of $N_2H_6SnF_6$ was indexed on the basis of a cubic cell with a=10.550(4) Å, V=1174(1) Å. The thermal behaviour of $(N_2H_6)_2SnF_6F_2$ was additionally investigated using TG, DTG and DTA measurements.

INTRODUCTION

The hexafluorostannates of alkali metals, divalent metals, ammonium [1] and several heterocations have so far been described [2-5]. The crystal structures [6,7], vibrational spectra [4,8-11], Mössbauer spectra [4,12,13] and the ¹⁹F nuclear magnetic resonance [11] of some complexes have been studied to provide information concerning the symmetry of the SnF_6^2 -ion, cation - anion interactions, distortion of the anion and the bonding in the complexes. For $(N_2H_5)_2SnF_6$ its preparation and optical properties have been reported [2].

The present study is concerned with the synthesis of two new $N_2H_6(2+)$ compounds, the vibrational spectra of $N_2H_6SnF_6$, $(N_2H_5)_2SnF_6$ and $(N_2H_6)_2SnF_6$.F₂ and the thermal analysis of the latter compound.

0022-1139/90/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

RESULTS AND DISCUSSION

In the reaction between N₂H₆F₂ and Sn(OH)₄ in a 2:1 molar ratio, $(N_2H_6)_2SnF_6F_2$ was crystallized from an aqueous HF solution. This type of compound is known for $(N_2H_6)_2TiF_6F_2$ [14] and $(N_2H_6)_2GeF_6F_2$ [15]; the crystal structure of $(N_2H_6)_2TiF_6F_2$ [14] consists of TiF_6^2 layers sandwiched between composite layers in which a F⁻ ion is surrounded by four $N_2H_6^{2+}$ units and vice versa. We assume a similar structure also for $(N_2H_6)_2SnF_6F_2$.

 $N_2H_6SnF_6$ was obtained when $N_2H_6F_2$ and Sn(OH)_4 in a 1:1 molar ratio dissolved in 40% HF; it was also prepared by the reaction of $N_2H_6F_2$ and SnF_4 in anhydrous hydrogen fluoride. Thermal decomposition of $(N_2H_6)_2SnF_6\cdot F_2$ in a vacuum system at 80°C gave $(N_2H_5)_2SnF_6\cdot$ Hydrogen fluoride liberated during the heating of the solid was identified by its infrared spectrum. $(N_2H_5)_2SnF_6$ is also produced when $(N_2H_6)_2SnF_6\cdot F_2$ is exposed to a laser beam for a long period.

The vibrational spectra of $N_2H_6SnF_6$, $(N_2H_6)_2SnF_6$, F_2 and $(N_2H_5)_2SnF_6$ are given in Table 1. The spectra of $N_2H_6SnF_6$ and $(N_2H_5)_2SnF_6$ show the greatest similarity with the alkali metal hexafluorostannates for the anionic part of the spectrum [4].

The Raman spectrum of $(N_2H_6)_2SnF_6F_2$, has the \dot{v}_1 mode of the SnF $_6^{2-1}$ group split into two strong bands, a feature which was observed in the Raman spectrum of $(ClO_2)_2SnF_6$ [11]. The splitting can be attributed to solid state splitting, as was suggested for $(ClO_2)_2SnF_6$.

In a laser beam $N_2H_6SnF_6$ and $(N_2H_6)_2SnF_6F_2$ decompose and changes can be observed in the regions of the cationic and anionic parts of the Raman spectra. In the Raman spectrum of $N_2H_6SnF_6$ the strongest band lies at 580 cm⁻¹, and after a while additional bands at 635 and 670 cm⁻¹ appear. In the low frequency region a new band at 323 cm⁻¹ is also observed. In the cationic part of the spectrum a new band at 978 cm⁻¹ becomes the strongest, confirming the presence of the $N_2H_5^+$ ion. The bands appearing at 3050, 3140 and 3298 cm⁻¹ can be assigned to the NH_4^+ ion [16]. The decomposition of $N_2H_6SnF_6$ is very complex: $N_2H_6^{2+}$ decomposes to the $N_2H_5^+$ and NH_4^+ ions, and besides the SnF_6^{2-} ion, the SnF_5^- ion or SnF_4 is present. Both have the Sn-F stretching vibration at 620 cm⁻¹; SnF_5^- at 622 cm⁻¹ [3] and SnF_4 at 621 cm⁻¹ [1]. The band observed at 635 cm⁻¹ can, therefore, be attributed either to SnF_5^- or SnF_4 . The thermal decomposition of $N_2H_6SnF_6$ has to be studied in detail to elucidate the mixture of compounds formed and the gases released in the process.

N ₂ ⊢	¹ 6 ^{SnF} 6	(N ₂ H ₆)	2 ^{SnF} 6 ^{-F} 2	(N ₂ H ₅)	2 ^{SnF} 6	Assignment
IR	R	IR	R	IR	R	
250sh	167(10) 202(13) 265(34)		205(15) 278(25)		252(28)	v;(SnF ^{2−})
281sh						
320vs			331(15)			
403w	418(4.0)	400w	(20(15.5)	410w		
	418(4.0) 461(13) 505(7.5)	469m	420(15.5) 460(17)	461sh		ν ₂ (SnF ₆ ^{2−})
538vs		545vs		542vs		$v_{x}(SnF_{4}^{2})$
	602(100) 670(5)		588(100) 609(45)	583sh	583(100	√ ₃ (SnF ₆ ²⁻))]-√ ₁ (SnF ₆ ²⁻)
		709w		713w		
920m	1041(70)	942m	981(10) 1043(18) 1050(15) 1059(32)]- (N-N) _s
1101vs	1100(2)	1078vs		1083s 1118s 1147sh	1091(11.4 1115(83)	(NH ₃ ⁺) _r
1292w		1 22 3w				1
1272W		1405w 1469w 1485w			1409(4.4)	(NH ₂) _r
1500vs				1519m		7
1570vs	1562(5)	1598w		1540w	1540(4.8)	
1622w		1610w			1617(6.1)	
	1648(7.5)			1632w	1643(7.0)	(NH ₂) _d

Vibrational spectra (cm⁻¹) of $N_2H_6SnF_6$, $(N_2H_6)_2SnF_6F_2$ and $(N_2H_5)_2SnF_6$

The recording of the Raman spectrum of $(N_2H_6)_2 SnF_6 F_2$ gives rise to significant changes in the region of the N-N stretching vibration: the $N_2H_6^{2+1}$ ion is transformed to the $N_2H_5^+$ ion, the bands at 1043, 1050 and 1059 cm⁻¹ slowly disappear and the band at 981 cm⁻¹ becomes the strongest. In the region of the Sn-F stretching vibration only the band at 580 cm⁻¹ is observed unchanged. $(N_2H_6)_2SnF_6 F_2$ decomposes to $(N_2H_5)_2SnF_6$ by proton transfer between

 $N_2H_6^{2+}$ and F⁻, producing $N_2H_5^{++}$ and liberating HF. The same feature was first observed for $(N_2H_6)_2$ TiF₆-F₂ [17].

 $\rm N_2H_6SnF_6$ crystallizes in the cubic system. The results of indexation of the diffraction photograph are summarized in Table 2.

TABLE 2

		and the second data and the se	
hkl	d _{calc.}	^d obs.	Ι
200	5.27	5.27	5
220	3.73	3.72	s
222	3.04	3.04	w
231	2.820	2.822	vw
400	2.637	2.643	vw
4 1 1	2.487	2.484	vw
240	2.359	2.358	m
332	2.249	2.248	w
422	2.153	2.161	m
440	1.865	1.863	w
442	1.758	1.759	m
260	1.668	1.667	w
622	1.590	1.591	w

X-ray powder diffraction data for N2H6SnF6

Indexed on the basis of a cubic cell with a=10.550(4) Å, V=1174(1) Å.

A thermal decomposition study of $(N_2H_6)_2 \text{SnF}_6 \cdot \text{F}_2$ is illustrated in Figure 1. The compound $(N_2H_6)_2 \text{SnF}_6 \cdot \text{F}_2$ starts to lose weight immediately after heating, and up to 155°C it loses 11.6% of its weight, corresponding to the formation of $(N_2H_5)_2 \text{SnF}_6$. The first step is endothermic with a DTA peak at 112°C and a DTG minimum at 115°C . The next step is exothermic with a DTA peak and DTG minimum at 213°C . The cumulative weight loss up to 228°C is 22.2% and the intermediate is identified as $(\text{NH}_4)_2 \text{SnF}_6$. The third endothermic step accompanied by a DTA peak at 317°C and DTG minimum at the same temperature occurs between 228 and 369°C . The sample loses 36.0% of its starting weight and the intermediate is identified as NH_4SnF_5 . The weight loss is greater than that calculated for the formation of NH_4SnF_5 due to partial reduction of tin in the sample. Further decomposition is endothermic and composed of three steps with DTA peaks at 427, 470 and 565 $^{\circ}$ C and DTG minima at 425, 470 and 551 $^{\circ}$ C. In the temperature range between 400 and 520 $^{\circ}$ C decomposition of the sample and reduction of tin occur simultaneously, and only nonstoichiometric compounds can be obtained. The last step intermediate was isolated; the cumulative weight loss (64.9%) up to 740 $^{\circ}$ C corresponds to the formation of metallic tin.

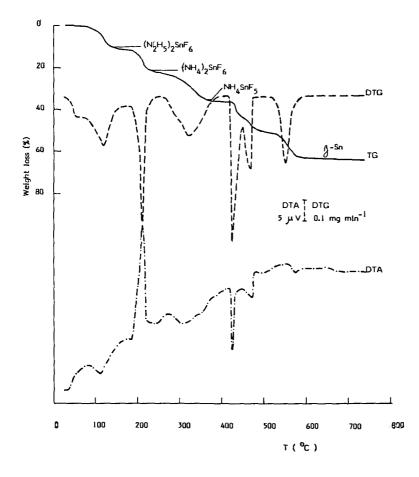


Fig. 1. TG, DTG and DTA curves of $(N_2H_6)_2SnF_6F_2$.

The thermal decomposition of $(N_2H_6)_2SnF_6$, F_2 can be described by the equations:

$$(N_2H_6)_2SnF_6F_2 \longrightarrow (N_2H_5)_2SnF_6 + 2 HF$$
 (1)

$$(N_2H_5)_2SnF_6 \longrightarrow (NH_4)_2SnF_6 + N_2 + H_2$$
 (2)

$$(NH_4)_2SnF_6 \longrightarrow NH_4SnF_5 + NH_3 + HF$$
 (3)

Intermediates $(N_2H_5)_2SnF_6$ were characterized by chemical analyses, vibrational spectra and their X-ray diffraction patterns. NH_4SnF_5 was characterized by chemical analysis of ammonium and by comparison with the X-ray diffraction photograph of NH_4SnF_5 isolated in the reaction between NH_4SnF_3 and XeF_2 [18]. The end product was identified on the basis of its X-ray diffraction patterns as β -Sn [19].

EXPERIMENTAL

Preparation of the samples

 $\rm N_2H_6SnF_6$ was prepared by dissolving Sn(OH)_4 in a 40% HF solution and adding $\rm N_2H_6F_2$ in a 1:1 molar ratio. The crystals were obtained by slow evaporation of the solution. The reaction between $\rm N_2H_6F_2$ and SnF_4 in anhydrous HF yielded the same compound.

 $(N_2H_6)_2 {\rm SnF}_6 {\rm \cdot F}_2$ was obtained when ${\rm Sn(OH)}_4$ and $N_2H_6F_2$ were mixed in a 1:2 molar ratio in 40% HF.

 $(N_2H_6)_2 SnF_6.F_2$ was decomposed on a vacuum system at $80^0 C$ yielding $(N_2H_5)_2 SnF_6.$

 $(N_2H_5)_2 {\rm SnF}_6$ was isolated as the first step intermediate at 155°C when $(N_2H_6)_2 {\rm SnF}_6.F_2$ was decomposed using a Mettler TAI Thermoanalyzer.

Chemical analysis

Hydrazine was determined potentiometrically by potassium iodate titration [20], fluorine by the direct method using an ion-selective electrode [21] and ammonium by a Kjeldahl method [22].

The infrared spectra of the solids pressed between CsBr discs were obtained using a Perkin-Elmer 521 spectrometer. The Raman spectra of the solid in a Pyrex tube were recorded on a Spex-1401 double monochromator and the excitation band was 514.5 nm of an Ar^+ laser, Coherent radiation model CR-3. For thermal analysis a Mettler TA1 Thermoanalyzer was emplayed. The sample was heated in a dry argon atmosphere at a flow rate of 5 Ih^{-1} . $d-Al_2O_3$ was used as reference material. The heating rate of the furnace was $1^{\circ}C$ min⁻¹, the DTG range was 10 mg min⁻¹ and the DTA range was 100 μ V. The starting weight of the sample was 230-500 mg when intermediates were isolated.

X-ray powder diffraction data were obtained with a Debye-Scherrer type camera and CuK_{J} , radiation. The diffraction photograph was indexed using the PARAM program of the X-ray 72 system [23].

ACKNOWLEDGEMENT

We thank Miss B. Sedej for chemical analysis. The work was financed by the Research Community of Slovenia.

REFERENCES

- Gmelins Handbuch, System No. 46, Zinn Ergänzungsband, Verlag Chemie, GmbH, Weinheim, 1958.
- 2 W. Pugh, J. Chem. Soc., (1953) 1934.
- 3 K.O. Christe, C.J. Schack and R.D. Wilson, Inorg. Chem., 16 (1977) 849.

- 4 H.A. Carter, A.M. Qureshi, J.R. Sams and F. Aubke, Can. J. Chem., 48 (1970) 2853.
- 5 K.E. Pullen and G.H. Cady, Inorg. Chem., 5 (1966) 2057.
- 6 C. Hebecker, H.G. von Schnering and R. Hoppe, Naturwissenschaften, <u>53</u> (1966) 154.
- 7 D.H. Brown, K.R. Dixon, R.D.W. Kemmitt and D.W.A. Sharp, J. Chem. Soc., (1965) 1559.
- 8 N.N. Greenwood and J.N.R. Ruddick, J. Chem. Soc., A,(1967) 1679.
- 9 R.D. Peacock and D.W.A. Sharp, J. Chem. Soc., (1959) 2762.
- 10 H. Kriegsmann and G. Kessler, Nahmeissenschaften, 47 (1969) 393.
- 11 P.A.W. Dean and D.F. Evans, J. Chem. Soc., A, (1967) 698.
- 12 V.F. Sukhovrekhov and B.E. Dzevitskii, Dokl. Akad. Nauk SSSR, <u>170</u> (1966) 1089.
- V.F. Sukhovrekhov and B.E. Dzevitskii, Dokl. Akad. Nauk SSSR, <u>177</u> (1967)
 611.
- 14 L. Golič, V. Kaučič, and B. Kojić-Prodić, Acta Crystallogr., B36(1980) 659.
- D. Gantar, L. Golič, I. Leban and A. Rahten, J. Fluorine Chem., <u>30</u> (1985)
 19.
- 16 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons Inc., New York, 1963.
- 17 S. Milićev and J. Maček, J. Chem. Soc., Dalton Trans., 1984, 297.
- 18 B. Družina, Thesis, 'E. Kardelj' University of Ljubljana, Yugoslavia, 1987.
- 19 ASTM 4-0673.
- 20 W.M. McBride, R.A. Henry and S. Skolnik, Anal. Chem., 23 (1951) 890.
- 21 Y. Koryta, Anal. Chim. Acta, <u>61</u> (1972) 329.
- 22 A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longmans, London, 1961.
- 23 J.M. Stewart, G.J. Kruger, H.L. Ammon, C.W. Dickinson and S.R. Hall, The X-Ray 72 System, Technical Report TR-192, Computer Science Center, University of Maryland, College Park, Maryland, 1972.